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FORMULATICN CF PROBLEMS OF FINDING STRESS FUNCTIONS #/10L
WITH THE AID OF BIHARMONIC POUTENTIALS

Yu.D.Kopeykin (Ltvov)

A general solution for the equation of statics of an elastic
body in the presence of volume forces, in the form of bi-
harmonic volume potentials, 1s derived. Discontinuity formu-
las for the limiting values of derivatives of volume potenti~
als for single and double layers, at various points of the
body surface are presented, based on the fundamental solu-~

tion of the biharmonic equation & = r/2.

It is known that the general solution of the equations of statics of an
elastic body in the absence of volume forces can be represented in the form of
three harmonic and one biharmonic stress functions. The article first shows how
this general solution can be obtained in the presence of volume forces; the
particular soclution is then derived in the form of so-called biharmonic volume
potentials.

For a general solution of the basic boundary problems, the use of the
derivatives of the biharmonic potentials for single and double layers is pro-
posed. The article presents the "discontinuity formulas" for the limiting
values of these derivatives at various points of the bvody surface.

The biharmonic potentials used in this work are based on the fundamental
solution of the biharmonic equation £ = r/2. However, other fundamental solu-
tions may also be taken for this purpose.

To define the concept of biharmonic potentials, introduced by the present
writer (Bibl.l, 2), let us apply the Gauss-Ostrogradskiy theorem to the sum of

integrals
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where T is a domain of three-dimensional space; x, 1 = 1, 2, 3 are rectilinear
orthogonal coordinates; dt = dx;dxs.dxs is an element of the domain T; C, £ are
quadruply differentiable functions.

We thus have (Bibl.l)
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where S is the smooth Lyapunov boundary of the domain T; ds is an element of the
boundary S; n is the direction of the outer normal with respect to S.

Let us assume that the function { is the fundamental solution of the bi-
harmonic equation (Bibl.2), i.e.,

i
b= -1, (1)

where r is the distance between the variable points I and P of the domain T + S.

The point P, over whose x coordinates the integration is carried out, is
termed a current point, while the point P, with the coordinates x, is termed a

fixed point.
Differentiating with respect to the coordinates of the point P, we have
cosq@ .
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where 9 is the angle betﬂeen_gge normal n, plotted at the point P, and the /105
direction of the vector r = P,P; @43 1 = 1, 2, 3 are the direction cosines of
the normal n; 8,4, 1 = 1, 2, 3 are the direction cosines of the vector T;

k)
Cos @ = E af,.

i=1

Following the substitution [cf. (Bibl.2)] of egs.(1, 2), the integral
formula given above is written as
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On the left-hand side of eq.(3), the function % depends on the coordinates of
the fixed point; on the right-hand side, it is regarded as a function of coordi-
nates of the current point. The values of the functions at points inside the
boundary S of the domain T are underlined. Equation (3) is analogous to the
basic integral formula of the theory of harmonic functions (Green's function;

Bibl.1).

The first two terms on the right-hand side of eq.(3) represent the Newtoni-
an potentials of the single and double layers; their sum will be a harmonic
function. The remaining three terms are proportional to the polar static
momentls of the single and double layers, as well as to the volume with respect
to the fixed point. Hence the proposal (Bibl.2) that they be termed biharmonic
potentials of the single layer, the double layer, and the volume. The polar
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static moment is construed as the integral of the product of the element and the
distance r from the pole F,.

The biharmonic potentials of the single and double layers satisfy the bi-
harmonic equation.

Certain properties of biharmonic potentials were investigated elsewhere
(Bibl.2).

Consider the properties of the third derivatives of the single-layer bi-
harmonic potential and the second derivatives of the double-layer biharmonic
potential, on examining their variation in the neighborhood of points at the
surface S.

Let g be the biharmonic potential of a single layer, with the density v of
surface distribution

l el
g=5 \S vrds. (1)

S

laying the outer nornal n, through a voint A of the surface 5, we mark on
it the fixed point P,.

We then calculate the third-order derivatives of g with respect to the co-
ordinates of the fixed point and the direction of the normal n,

& 1 v .
Gton = | 7 (2 (0 — Bcosvids
S
g L | (5)
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where @5, i = 1, 2, 3 are the direction cosines of the normal ng; ¥ is the {106
angle rade by the directions of the normal ng and the vector r:

3
3
cosY = Z a8,

We calculate the limiting values of the derivatives (5) when the fixed
point P, tends toward the point A on the surface S. We decompose each of the
integrals (5) into two additive integrals, one of which is taken over the neigh-
borhood A of the point A and the other, over the remainder of the surface S. On
determining the first addend, we equate to zero the distance between the points
P, and A and then also the dimension of the neighborhood A. On passing to the
Jimit, we have

o’g 2n I v
W=T]afovo+~2~ §7[2aioﬂ,+(l—35§)cos¢]ds; (6)

S



>Fg 2 1 v o
m}m = ? UioigVe + —2_ X r'_g' (amﬁ/ + aioﬁl - SﬁiB/COS \p) dS. i I

§

where vy is the density v at the limiting point; T = 1 if B, tends toward A in-
side the surface S; T = -1 if By tends toward A outside the surface S.

The integrals in egs.(6) denote the direct values of the derivatives at the
voint A. V.D.Kupradze (Bibl.3) showed that singular integrals of this type
converge in the presence of a limited density v.

Consider the biharmonic potential h of a double layer of density # on the
surface 3

1
h=~2—5‘xcostpds. (7)

S

Let us then calculate the second derivatives of h with respect to the co-
ordinates of the fixed point. We find the limiting values of these derivatives
at the point A of the surface S, proceeding in the same manner as in deriving
egs.(6). This yields

~
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where 1, is the value of the density » at the limiting point.

The meaning of the coefficient T has been clarified above.

Let us now consider the apvlication of biharmonic potentials to the solu-
tion of three-dimensional problems of the statics of elastic bodies. We write

the equation of elasticity

I e

where V is the vector of elastic displacement; X is the vector of volume force
with the components X;, X2, Xa; w is Poisson's ratio; and G is the modulus of
elasticity in compression.

let us replace the function div V in eq.(9) and assume that this function
is proportional to the laplacian of some other function 3, 107

divV = (1 — 21 vi,. (10)
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Then, eq.(9) becomes a Poisson equation

gl |

V3V + gradg) = — (11)

The solution of eq.(11) represents the sum of the harmonic vector a and the
Newtonian vector potential of volume T with the volume density X/G. Hence,
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where X is the modulus of the vector i; {4 is the direction of the vector X.

Comparing this last expression with eq.(10), we have

.
o . o/di
20— ve =diva 4+ o XV'\”dF dt. (13)

'

We perform laplace's operation with respect to both parts of eq.(13)

1

—_ s __
2(l —w v, = -

(14)
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1
In accordance with the integral equation (3), the solution of eq.(14) will

be written as the sum of a biharmonic function £ and the {-direction derivative
of the biharmonic potential of volume T with the volume density X/87G(1 - w)

. . 1 d "y r
T
Then, eq.(12) will become
2(1 —p) v = diva. (15)

The vector of elastic displacement is written as



|

o Al X —. dr
_ — . . — 2 grad - | dt.
V=ag—gradg + VPTE \[X 7 4(l_p)gra dl] (16)

The elastic displacement (16) is _represented by three harmonic functions
a1, az, as, by the vector components a connected by the biharmonic function §,
and by the particular solution of the elasticity equation in the form of the /108
Newtonian and biharmonic potentials of volume T.

On examining the first three-dimensional boundary-value problem of statics,
we write the boundary condition

V=T, (17)

where E is the value assumed by the vector V at points of the surface S; T is
the vector specified at points of the surface S.

Let us then substitute eq.(16) into the boundary condition (17)
a—gradg = F. (18)

In eq.(18), the values assumed by the vectors at points of the surface S are
underlined; F is a known vector, with the components

) ] oY ] o*r
PR N
4JGT r 4(1 —p) 0x;o0! (19)

where v; are the direction cosines of the volume force vector X.

To formulate the boundary conditions for the second elastostatic boundary-
value problem, let us first express the stress tensor compcnents with the aid of
eq.(16), Cauchy's equation, and Hooke's law. After transformation, we have

9%
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where 6;;, =1 when i = j, and &,y = O when i # j.

Let us then write the boundary conditions for the second boundary-value

problem o
.\_ G490 = Pp (=123, (21)

==
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where p; are the components of the specified load vector; O;; are the values of
the stress tensor components at points of the body surface S. Let us substitute
eq.(20) into the boundary conditions. We then obtain boundary conditions ex-
pressed in the form of the stress functions

ﬁc)a ot )
‘> . /0 Ox () + Qualov e = _G— i=1, 2, 3. (22)
where /-‘ —
(e ot
Pr=p—5 \ X[V dng + oxn Cos (nel) —

T

1
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ST —p) \ Onsongal P g :

In condition (22), the values assumed by the functions at the surface points S
are underlined. 109

(23)

We now formulate the third boundary-value problem in the determination of
stress functions. Let us assume that the ratio of stress to displacement at the
surface S of the body is specified such that

3
E o_l'/alo + (l)l']il' = (Dl; i= 1- 2) 31 (21")

=i

where w; , ¢; are functions specified at the surface S,

Let us substitute egs.(16), (20) into the boundary conditions (24L). Then,
we obtain, for the stress functions,

Oa, ()o ag —
dn0 >_;6x fo= 6)\0()0 +2p.alovg+m.( ‘—07,0)—¢" (25)
fe=al

where ¢; are components of the known vector determined at the surface points 3
according to the formula

PO ’m(P)[Y, I o
O = D) — L ©ilfo) ¢¥e 1 0
4,15){{ G |7 4(l—p)ax,~061:]+

r
d— 90— aL\ ] (
— 26)
+“Y‘—,+__r,c .____.l_._(._—ai__ .____r
L Yi Gry ™ Gy SO8 (0D SU= W\ dx,uon,01 — Mo~ dt.
The fourth boundary~value problem, where stresses are specified over a
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part 51 of the body surface S while displacements are specified over the remain-
ing vart S, of the surface, has boundary conditions of the form of eq.(22) for
points of the sector S; and conditions of the form of eq.(18) for points of the

sector Ss.

Thus, the boundary conditions for the four basic problems of statics, per-
taining to the determination of stress functions, have been formulated with the
aid of eqgs.(18), (22), and (25). The effect of the volume force is expressed
by egs.(19), (23), (26), where the volume force serves as the density of the bi-
harmonic and Newtonian volume potentials.

Thus, limiting formulas for the derivatives of single- and double-layer
biharmonic potentials, needed for the further solution of boundary-value prob-

lems, have been obtained.
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